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Abstract-This paper summarizes an analytical and numerical study of natural convection in a fluid- 
saturated porous medium filled in a rectangular cavity. The porous medium is assumed to be both 
hydrodynamically and thermally anisotropic. The principal directions of the permeability are oriented in 
a direction that is oblique to the gravity vector, while those of thermal conductivity coincide with the 
horizontal and vertical coordinate axes. The side walls of the cavity are, respectively, heated and cooled by 
a constant heat flux while the horizontal walls are adiabatic. An analytical solution, valid for stratified flow 
in slender enclosures, is presented. Scale analysis is applied to predict the order of magnitudes involved in 
the boundary layer regime. Comparisons between the fully numerical and analytical solutions are presented 
for A = 4. 0 4 R < 600, low3 < k* Q 103, lo-’ < K* < IO3 and 0” Q 0 d 180” where A, R, k*, K* and f3 
denote the enclosure aspect ratio, Rayleigh-Darcy number, anisotropic thermal conductivity ratio, aniso- 
tropic permeability ratio and the inclination angle of principal axes of the anisotropy in the permeability, 
respectively. It is found that the analytical solutions can faithfully predict the flow structure and heat 
transfer for a wide range of the governing parameters. The results indicate that a maximum (minimum) 
heat transfer rate can be obtained if the porous matrix is oriented with its the principal axis with higher 
permeability parallel (perpendicular) to the vertical direction. Also, it is found that a large thermal 

conductivity ratio causes a higher flow intensity but a lower heat transfer. 

INTRODUCTlON 

Buoyancy-driven convection in fluid-saturated 
porous media has many applications. Prominent 
among these are insulation techniques, flows in soils, 
aquifers, petroleum extraction, storage of agricultural 
products, underground diffusion of contaminants and 
porous material regenerative heat exchangers. Due to 
its importance, a considerable amount of information 
already exists. The state of the art has been sum- 
marized in a recent book by Nield and Bejan [ 11. 

Most of the previous studies have usually been con- 
cerned with homogeneous isotropic porous structures. 
Within the last few years, however, the effects of non- 
homogeneity and anisotropy in porous media have 
been investigated. The inclusion of more physical 
realism in the matrix properties of the medium is 
important for the accurate modeling of the anisotropic 
media. Anisotropy, which is generally a consequence 
of a preferential orientation or asymmetric geometry 
of the grain or fibers, is in fact encountered in numer- 
ous systems in industry and nature. 

Available works on this topic are concerned mostly 
with the study of natural convection in horizontal 
anisotropic porous layers heated from below. The 
critical Rayleigh number for the onset of convection 
was first considered by Castinel and Combamous [2], 
who conducted an experimental and theoretical inves- 
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tigation for a layer with impermeable boundaries. The 
effect of thermal anisotropy on the onset of motion 
was studied by Epherre [3]. Kvernvoid and Tyvand 
[4] extended these analyses to supercritical finite- 
amplitude convection. McKibbin [5] conducted an 
extensive study on the effects of anisotropy on the 
convective stability of a porous layer. At the upper 
surface of the porous medium he considered boundary 
conditions sufficiently general to allow both imper- 
meable and constant-pressure boundaries. Nielsen 
and Storesletten [6] analyzed two-dimensional con- 
vection in rectangular channels with the lateral walls 
and horizontal boundaries permeable and conducting. 
It was demonstrated that, as expected, the effect of 
conductivity of the walls is stabilizing. Tyvand and 
Storesletten [7] investigated the problem concerning 
the onset of convection in an anisotropic porous layer 
in which the principal axes were obliquely oriented to 
the gravity vector. As a result, new flow patterns with 
a tilted plane of motion or tilted lateral cell walls were 
obtained. Also, it was demonstrated that the critical 
Rayleigh number was always reduced when compared 
with a perpendicular or parallel orientation of fibers 
vs boundaries. The effect of anisotropy of thermal 
instability in a fluid-saturated porous medium suh- 
jetted to an inclined temperature gradient of finite 
magnitude was analyzed by Parthiban and Patil [8] 
using the Galerkin technique. It was found that aniso- 
tropic medium is most stable while either the isotropic 
situation or the horizontally isotropic situation is the 
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NOWKNCLATURE 

A aspect ratio of the cavity, H/L 
a, b, c constants, equation (10) 
c dimensionless vertical temperature 

gradient 
g gravitational acceleration 
H height of the cavity 
i’,j Cartesian coordinates coincident with 

the principal axes 
k:, k; thermal conductivity 
k* thermal conductivity ratio, k:/k.i, 
w, flow permeability tensor, defined in 

equation (4) 
Kh, Ki permeability 
K* anisotropic permeability ratio, Km/K; 
L thickness of the cavity 
NU Nusselt number, equation (43) 
P’ pressure 
R Darcy-Rayleigh number, 

KmgfiLAT’/a;v 
t’ time 
T dimensionless temperature, 

(T’- T:)/AT 
T:. reference temperature at the geometric 

center of the cavity 
AT’ characteristic temperature difference, 

q’L/kl 
AT dimensionless wall-to-wall 

temperature difference 
V seepage velocity 
u, v dimensionless velocities in x and y 

directions, (u’, v’)L/c$ 

x, y dimensionless Cartesian coordinates, 
W,Y’)lL. 

Greek symbols 
B thermal diffusivity tensor, defined in 

equation (4) 
B coefficient of thermal expansion of the 

fluid 
e inclination of the principal axes 
6T temperature difference between 

vertical boundaries 
AT characteristic temperature difference 

chosen in the definition of the Nusselt 
number 

AT* temperature difference between 
horizontal boundaries 

p dynamic viscosity of the fluid 
V kinematic viscosity of the fluid 

fluid density 
; dimensionless stream function, $‘/a;. 

Superscripts 
’ dimensional quantities. 

Subscripts 
C at the geometry center of the cavity 
max maximum value 
min minimum value 
0 reference state. 

most unstable one depending on the horizontal Ray- 
leigh number and anisotropy parameters. Recently, 
Xiaoli Zhang et al. [9] studied Benard convection in 
a cavity filled with an anisotropic porous medium 
where the principal axes are non-coincident with the 
gravity vector. Both the permeability ratio and incli- 
nation angle of the principal axes were found to have 
a strong influence on the system. The existence or the 
co-existence of four solution branches, at supercritical 
Rayleigh number, was demonstrated. 

Natural convection heat transfer in anisotropic 
porous media heated and cooled from the sides has 
received less attention. Burns et al. [lo] examined ana- 
lytically the convective heat transfer in a vertical slot. 
Both isothermal and non-isothermal walls were con- 
sidered. The results demonstrated the dependence of 
the Nusselt number on the anisotropic permeabilities. 
Poulikakos and Bejan [ll] showed that the non- 
uniformity of permeability and thermal diffusivity can 
have a dominating effect on the overall heat transfer 
rate. Lai and Kulacki 1121 considered convection in a 
rectangular cavity with a vertical permeable interface 
between two porous media. The effects of sublayer 
thickness ratio, permeability contrast and non- 

uniform conductivity on the flow and temperature 
fields within the layered structure were discussed. 
Hong et al. [13] examined analytically the effets of non- 
uniform permeability conditions on the natural con- 
vection from a vertical plate in porous media. It was 
found the nonhomogeneity in permeability near the 
solid wall results in a strong flow-channeling effect 
that significantly increased the heat transfer. Ni and 
Beckermann [ 141 studied numerically the natural con- 
vection flow and heat transfer in a vertical enclosure 
filled with homogeneous porous media that are both 
hydrodynamically and thermally anisotropic. When 
compared to isotropic porous media it was found 
that the Nusselt number was enhanced by a large 
permeability ratio and reduced by a low one. A large 
thermal conductivity ratio caused a smaller Nusselt 
number but a low thermal conductivity ratio had very 
little effect on the heat transfer pattern. The problem 
of natural convection in a vertical cylinder filled with 
anisotropic porous media was considered by Chang 
and Hsiao [ 151. The effects of anisotropic permeability 
ratio, anisotropic thermal conductivity ratio, Ray- 
leigh number and geometrical aspect ratio on the flow 
field and heat transfer were discussed. 
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The effect of an anisotropic permeability of arbi- 
trary orientation on the convective heat transfer in a 
vertical cavity heated isothermally from the side was 
investigated numerically by Xiaoli Zhang [16]. It was 
found that the flow changes from a mild convection 
to a boundary layer regime as the orientation of the 
principal axis with higher permeability was changed 
from horizontal to vertical. Recently, Chang and Liu 
[ 171 studied numerically the effects of anisotropic per- 
meabilities, thermal diffusivity and wall conduction 
on the convective heat transfer in a rectangular porous 
cavity. The results indicate that as the ratios of the 
thermal diffusivity of the walls to porous cavity 
increase, the average Nusselt numbers increase. Also, 
it was demonstrated that a critical value of the aniso- 
tropic thermal diffusivity ratio may exist such that 
the Nusselt number reaches a minimum. This critical 
value decreases with increasing value of the aniso- 
tropic permeability ratio. 

The present paper is concerned with natural con- 
vection in a vertical cavity filled with a porous 
medium. The side walls of the cavity are, respectively, 
heated and cooled at constant heat flux while the top 
and bottom walls are adiabatic. The porous medium 
is anisotropic in permeability with its principal axes 
oriented in a direction that is oblique to the gravity 
vector. Also, the porous medium is assumed aniso- 
tropic in thermal conductivity with the principal direc- 
tions of the effective thermal conductivities coinciding 
with the horizontal and vertical coordinate axes. An 
analytical solution, valid for cavities with high aspect 
ratio (A >> 1) is derived on the basis of a parallel 
flow approximation. A numerical study of the same 
problem, obtained by solving the complete system of 
governing equations, is also conducted. The results 
presented here are relevant to proper understanding 
of the general flow and heat transfer characteristics in 
anisotropic porous media. 

MATHEMATICAL FORPMlLATlON 

The physical model considered in this paper is 
shown in Fig. 1. A two-dimensional vertical rec- 
tangular enclosure of height H and width L is filled 
with a porous medium. The two end walls are insu- 
lated, while a uniform heat flux q’ is applied along 
both side walls. The thermophysical properties of the 
fluid are assumed constant, except for the density in 
the buoyancy term in the momentum equations. The 
porous medium is saturated with a fluid that is in local 
thermodynamic equilibrium with the solid matrix. The 
porous medium is anisotropic in flow permeability 
and thermal conductivity. The longitudinal and trans- 
verse components of the permeability are denoted by 
Kh and KL, respectively. The permeability is trans- 
versly isotropic, whereas the principal directions of 
the thermal conductivities (k&k;,) coincide with the 
horizontal and vertical coordinate axes. 

Assuming that the flow is laminar and that the 
cavity is long enough in the third (transverse) direc- 

b------L---4 
Fig. 1. Physical situation and coordinate system. 

tion to allow the system to be treated as a two-dimen- 
sional rectangular cavity, the equations gouverning 
the conservation of mass, momentum (generalized 
Darcy’s law) and energy, can be written as follows 
[18] : 

V-V’=0 (1) 
=i 

V’ =$(-VP’+& 
I 

~+V.(VwTT’) =o (3) 

where 2’ andiii’ are the second order flow permeability 
and thermal diffusivity tensors defined, respectively, 
by 

V‘ is the superficial flow velocity, p dynamic viscosity, 
p’ pressure, p density, g gravitational acceleration, 
T’ temperature, t’ time and jI coefficient of thermal 
expansion. It is noticed that the tensors g’ and i2’ are 
defined in the Cartesian frame of reference 
(0, Oy’, Ox’). 

Using a linear equation of state and introducing the 
Boussinesq approximation 

P = POD -B(T’-- G)l 
with L,ai/L,q’L/k; and L’/a;, as respective dimen- 
sional scales for length, velocity, temperature and time, 
the governing equations may be written in non-dimen- 
sional form as 
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V.BVJ-R$= 0 (6) 

g+v.(vT-avT) = 0 (7) 

where $ is a dimensionless stream function defined as 

a* a+ 
u=ay’ v=-ax (8) 

such that equation (1) is identically satisfied, and 

R = KmgPAT‘L/aiv 7 

where 

a = K*sin2 8+c0s2 fl 

b = K*cos2 8+sin2 6 
c = (l-K*)sinBcose (10) 

the The non-dimensional boundary conditions ovei 
walls of the enclosure are 

y=+_1/2: $=%=O aT=l 
ay aY 

(11) 

afi aT 
x=+A/2: 1//=~=0 ax=O (12) 

where A = H/L is the cavity aspect ratio. 
From the governing equations (6)-(7) and bound- 

ary conditions (1 l)-(12) it is seen that the present 
problem is governed by five dimensionless par- 
ameters : the aspect ratio of the cavity A, the Rayleigh 
number R, the thermal conductivity ratio k*, the flow 
permeability ratio K* and the angle of the principal 
axis e. 

DIMENSIONAL ANALYSIS 

In the general case, the quantities of interest 
involved in the present problem are inter-related in a 
complicated way that would not allow estimation of 
their orders of magnitude by a scale analysis. 
However, at sufficiently high Rayleigh numbers the 
flow has a boundary layer flow structure for which an 
order of magnitude estimate can be derived on scaling 
grounds. 

Let Sy be the dimensionless thickness of the bound- 
ary layer on the vertical wall, and 6~ and 6T be the 
velocity and temperature change across this layer. As 
discussed in the past by Bejan [19], in the case of a 
cavity heated from the sides at a constant heat flux we 
have to consider two temperature scales : namely 6T 
the temperature change across the vertical wall and 
AT* the temperature difference between the hori- 
zontal boundaries. These two temperature scales, 
although inter-related, are quite different. 

From the thermal boundary conditions imposed 
along the vertical boundaries we have 

6T 
G-l (13) 

while the Darcy’s law and the energy equation require 
that 

(15) 

where C = AT*/A is the vertical temperature gradient 
in the core of the cavity. 

From the above equations it is found that 

c-w 

R -112 
6T- - 

0 
C-112 

a 

R 112 

&A- - 0 c-w 
a 

(16) 

(17) 

where the vertical temperature gradient C can be 
determined from the conservation of energy within a 
control volume of arbitrary height taken at the end of 
the cavity. It is readily found that 

6uST6y N k*C. (19) 

Substituting equation (19) into equations (I 6)-( 18) 
then gives 

R -215 

6T- - 
0 

k*‘/5 

a 

(20) 

(21) 

(22) 

(23) 

Let us consider now the case where the convection 
is strong enough for a horizontal boundary layer to 
develop along the upper and lower surfaces of the 
enclosure. Let 6x be the thickness of these horizontal 
boundary layers, and 6v and 6T* be the velocity and 
temperature changes, respectively. From the con- 
servation of mass we have 

6u 6v -N- 
6x sy 

while the Darcy’s equation requires that 
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(25) 

From the conservation of energy we have 

6u6T6y - k* z. (26) 

These balances readily give 

,jx N a-~/l~~l/2k*l/l~~-l/~ (27) 
& N a’i’Ob-r/2k*~/‘ORZ/~ (28) 

67% N .-l/lO~‘/2k*-3’lOR-2/5 (29) 

The above results can be summarized as follows : 

u _ R3!sa-3/5k*1/5 (30) 
D N ~2/5~l~10~-1~2k~,d/lO (31) 

aT_ R-2’5aZiSk*“5 (32) 
C N R-‘:5a”5k*-2/5 (33) 

The Nusselt number, which will be defined later by 
equation (43) is given by 

Nu _ R2/5a-2/5k*-l/5 (34) 

The order of magnitudes predicted in the present 
section will be confirmed by resorting to more elab- 
orate numerical and analytical analyses. 

NUMEWCAL SOLUTION 

A finite difference procedure was used for numerical 
integration of the coupled transport and energy equa- 
tions. The temperature distribution was obtained 
from the energy equation (7) using the Alternating 
Direction Implicit method (ADI). The first and 
second derivatives were approximated by central 
differences and the time derivative by a first-order 
forward difference. The finite-difference form of the 
equation was written in conservative form for the 
advective term, in order to preserve the conservative 
property. Using this temperature field, the stream 
function was determined from equation (6) by Suc- 
cessive Over-Relaxation (SOR) before returning to 

the energy equation. Integration in time was con- 
tinued to steady state. 

The rectangular domain was divided into a uniform 
mesh. Numerical tests, using various mesh sizes were 
done for the same conditions in order to determine 
the best compromise between accuracy of the results 
and computer time. Typical results in terms of tic, the 
value of the stream function at the center of the cavity, 
and Nu are given in Table 1. Based on these results a 
mesh size 51 x 51 was adopted for most of the cases 
considered in this study. 

With thermal boundary conditions of uniform heat- 
ing, the unicellular convective motion becomes inde- 
pendent of aspect ratio A for large aspect ratios [20]. 
Other numerical tests, using various aspect ratios, A, 
were done while other conditions, including the mesh 
size (51 x 51), were maintained constant. Results are 
given in Table 2. It can be seen from the table that rc/c 
and Nu converge very fast to an asymptotic value 
when A is increased from unity. The aspect ratio A = 4 
was adopted for all the cases investigated. 

APPROXIMATE ANALYTICAL SOLUTION 

In this section an approximate solution, valid for a 
tall enclosure (A >> l), is presented. In this limit, as 
discussed in detail by Cormack et al. [21], Walker and 
Homsy [22], Vasseur et al. [20, 23, 241, and other 
authors, the flow velocity in the central part of the 
cavity, far from either end, can be assumed parallel 
and in the x-direction. Only the velocity component 
u(y) in that direction exists such that Ic/(x,y) = $(y). 
Also the temperature field is the sum of a linearly 
varying longitudinal part and an unknown transverse 
direction so that T = Cx+i(y) where C is the tem- 
perature gradient in the x-direction. Substituting these 
approximations into equation (6) and the steady-state 
form of equation (7), we have 

d_&!i4 
dy3 dy 

and 

Table 1. Effect of mesh on I+& and Nu for A = 4, R = 100, k* = 1 and K* = 1 

MxN 20x20 40x40 

*c 2.348 2.331 
NU 3.132 3.143 

50x50 80x80 

2.328 2.324 
3.144 3.147 

Analytical solution 

2.320 
3.149 

Table 2. Effect of aspect ratio A on I& and Nu for R = 100, k* = 1 and K* = 1 

(35) 

A 1 2 3 4 5 Analytical solution 

*c 2.193 2.368 2.336 2.328 2.328 2.320 
NU 2.571 3.106 3.145 3.144 3.144 3.149 
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(36) 

Boundary conditions in the y-direction are now 

y= _+1/2: $=O %. 
dy 

(37) 

The thermal boundary conditions in the x-direction 
cannot be reproduced exactly with the parallel flow 
approximation. However, we can impose an equi- 
valent energy flux condition 

Solutions of equations (35) and (36) satisfying 
equation (37) are 

1 sinhcly 
T=Cx+---- 

CI cash a/2 

where 

RC 
$z---. 

a 

The heat flux condition (38) becomes 

(39) 

(40) 

1 1 
C=--------- 

2k*C cash= u/2 (42) 

The temperature gradient C can be obtained for 
any combination of the controlling parameters R, K*, 
k* and 0 by numerically solving the above tran- 
scendental equation. However, this is a much easier 
task than numerically solving the full set of equations 
given in equations (5)-(I 1). 

The heat transfer across the cavity can be expressed 
in terms of a Nusselt number Nu defined as 

- 
where AT is the actual wall-to-wall temperature 
difference. According to equation (40) AT varies lin- 
early in x and for convenience was evaluated arbi- 
trarily at the position x = 0. 

In the boundary layer regime, i.e. when R >> 1, it 
may be easily shown from equations (41) and (42) 
that 

and 

(44) 

C = R-“5a’/5k*-2/5 (45) 

such that equations (39), (40) and (43) reduce to 

1(1 = Jk*a(e”(Y-r/2) - 1) (46) 

1 T= & + ae+‘12) (47) 

Nu=;. (48) 

The asymptotic behavior of the equations presented 
above, for the boundary layer regime, is exactly what 
was predicted by the previous dimensional analysis, 
as can been seen from equations (23), (32) and (34). 
Also, the above equations coincide with those 
obtained by Bejan [19] and Vasseur et al. [20] for 
k* = K* = 1, i.e. the isotropic medium. 

It is also of interest to consider the case for which 
CI -+ 0, which occurs either when R -+ 0 (pseudo-con- 
duction regime) or when the vertical thermal strati- 
fication C --* 0. In this situation, equation (42) yields 

R 

’ N 2J?aJiG 
(49) 

such that from equation (41) it is found that 

From equations (39) and (43) it is readily found 
that the stream function at the center of the cavity Ii/c 
and Nu are, respectively, given by 

and 

R2 
Nuz I+------ 

144a’k* ’ (52) 

RESULTS AND DiSCUSSION 

In this section the effects of anisotropic permeability 
and thermal diffusivity on the temperature and flow 
fields will be discussed separately. The results of these 
effects on a system with isotropic thermal properties 
(k* = 1) are presented first. Results with a focus on 
the effect of non-uniform conductivity will then 
follow. 

(a) Effects of anisotropic permeability 
Figure 2a-c illustrates theeffects of the permeability 

ratio K* on streamlines and isotherms for R = 100 
and 0 = 45”. In all these graphs the increments 
between adjacent streamlines and isotherms are 
A$ = Jl,,,JO and AT = (T,,,,,- T&/l0 where IL,,,,, 
is the maximum value of the stream function and T,,,,, 
and T,,, the maximum and minimum values of the 
dimensionless temperature located at the upper right- 
hand corner and lower left-hand corner of the cavity 
respectively. In an isotropic medium (K* = 1) the flow 
and temperature fields of Fig. 2a are similar to the 
results obtained in the past by Bejan [19] and Vasseur 
et al. [20]. The main features of the convective flow 
are that the vertical boundary layer thickness is con- 
stant and the core region is motionless. Also, the core 
region is linearly stratified with a constant vertical 
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Fig. 2. Numerical solution for the flow and temperature fields, R = 100, 0 = 45”, k* = 1 and (a) K* = 1, 
tjc = 2.328, r,,,,, = 1.038, T,,, = - 1.038; (b) K* = lo’, tic = 0.025, T,,, = 0.528, T,,,,, = -0.528; (c) 

K* = lo-‘, I//~ = 2.816, T,,, = 0.913, T,,, = -0.913. 

temperature gradient resulting in an altitude-inde- 
pendent temperature difference between the thermally 
active walls. Finally, due to the thermal boundary 
conditions considered here both the hydrodynamic 
and temperature boundary layer thicknesses are found 
to be equal. As K* > 1, Fig. 2b shows that the strength 
of convection is smaller than that of the case of 
K* = 1. This can be explained by the fact that an 
increase in K* corresponds to a decrease in the per- 
meability KL, when other parameters are held 
constant, resulting in a weaker overall convective flow 
and heat transfer. Indeed, the vertical isotherms in 
Fig. 2b indicate that for K* = lo3 the convective 
motion inside the cavity is very weak (tic = 0.025) 
and consequently the heat transfer mode is almost 
only due to the effects of pure conduction. Naturally, 
the reverse effects are observed as K* < 1, Thus, Fig. 
2d shows that, when K* = 10e3, both the flow and 
heat transfer have been promoted ($o = 2.816) by an 
increase in the permeability KA. A similar trend has 
been reported in the past by Chang and Liu [ 171, while 

studying natural convection in a rectangular cavity 
heated isothermally from the sides and filled with an 
anisotropic medium having its principal axes aligned 
with the gravity vector (0 = 00). 

The Nusselt number Nu and stream function at 
the center of the cavity tic vs the permeability ratio 
K* are presented in Fig. 3a and b, respectively, for 
k* = 1, 0 = 45” and various values of Rayleigh num- 
ber R. In these graphs, the analytical results are con- 
tinous lines. The numerical results, shown as biack- 
ened symbols, are seen to agree well despite the large 
range of parameters considered here. As expected, 
Fig. 3a and b indicates that, for a given value of K*, 
the convective heat transfer increases as R is made 
larger. For a fixed value of R, both Nu and $c tend 
asymptotically towards constant values as K* is made 
small enough. This behavior is predicted, in the 
boundary layer regime, by equations (44) (46) and 
(48) from which it is predicted that Nu -+ 
(R/cos' 0)‘15/2 and $c -+ (R/cos~~)"~ when K* -+ 0. 
These limits are indicated as dashed lines in Fig. 3a 
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Nu 

2 

1 

0 
la3 1cP lo" loo td IO' IO3 

K 

Fig. 3. Effect of permeability ratio K* on (a) Nusselt number, 
(b) stream function at the center for 0 = 45”, k* = 1 and 

various values of the Rayleigh number. 

and b for R = 100 and 600. They are not given for 
R = 20, since for this situation, due to a relatively 
low Rayleigh number, a boundary layer regime is not 
reached. As discussed earlier, the convection becomes 
less and less vigorous as K* is made larger. Thus, for 
each of the R considered in Fig. 3, the Nusselt number 
approaches the pure conduction regime, NU + 1 and 
$c -+ 0 as K* is made large enough (see for instance 
Fig. 2b). The value of K* necessary to reach the pure 
conduction regime depends upon R. For instance, for 
R = 20 pure conduction is reached when K* N 10 
while for R = 600 the corresponding value is approxi- 
mately K* N 103. 

The influences of the anisotropy permeability ratio 
K* and anisotropic orientation 0 on the evolution of 
the streamlines and isotherms can be seen by com- 
paring Figs. 2 and 4 corresponding to R = 100, 
k*=1,K*=103and10-3andB=0,45and90”.The 
case of a porous medium with a large permeability 
ratio will be discussed first. For 0 = o”, i.e. when the 
principal axes of anisotropy are aligned with respect 
to the gravity vector, it is observed from Fig. 4a that 
the buoyancy how for K* = lo3 is considerably lower 
than that for K* = 1 (Fig. 2a). Consequently the heat 
transfer is mostly by pure conduction, as indicated by 
the almost vertical isotherms of Fig. 4a. The resulting 
flow pattern is found to be similar to that obtained by 
Ni and Beckermann [ 141 for the case of a square cavity 

(A = 1) heated isothermally from the sides. Hence, 
the flow is seen to be channeled along the vertical 
walls, such that the hydrodynamic boundary layer is 
relatively thin. This phenomenon occurs even though 
the porous medium is homogeneous because the per- 
meability in the vertical direction is much greater than 
that in the horizontal direction. The effect of the ani- 
sotropy orientation on flow and temperature dis- 
tributions is depicted in Figs. 4a, 2b and 4c for 0 = 0, 
45 and 90”, respectively. These figures clearly show 
that the strength of the flow circulation is reduced 
as the orientation of the principal axis with higher 
permeability is changed from vertical (6 = 0’) to hori- 
zontal (0 = 900). Also, the velocity boundary layers 
observed along the vertical walls for 0 = O”, Fig. 4a, 
have been destroyed upon increasing the orientation 
0 to 90” (Fig. 4c). For this situation the permeability 
in the horizontal direction is now much greater than 
that in the vertical direction thus spreading in the 
horizontal direction any nonuniformities in the ver- 
tically flowing fluid. Nowever, due to the relatively low 
permeability in the vertical direction, the horizontally 
flowing fluid is strongly channeled along the two adia- 
batic horizontal end walls. 

The case of a porous layer with a low anisotropic 
permeability ratio, K* = 10e3, will be now 
considered. For 0 = o”, Fig. 4b shows that a reduction 
of the permeability ratio has very little influence on the 
strength of the flow circulation and the heat transfer 
patterns. The streamlines and isotherms shown in Fig. 
4b for K* = 10T3 are very similar to those for K* = 1 
(Fig. 2a). Furthermore, Fig. 4b indicates that, not 
only is the flow pattern characterized by the presence 
of bone-shaped streamlines, but also the flow is found 
to be channeled along the upper and lower horizontal 
walls. Such a channeling effect has also been observed 
by Ni and Beckermann [14] in the case of square cavity 
heated isothermally from the sides. This channeling 
effect can be attributed to the relatively low per- 
meability prevailing now in the vertical direction. 
Indeed, the thickness of the channeling flow is pre- 
dicted from the previous dimensional analysis, equa- 
tion (27), according to which 6x is proportional to 
$&-‘I5 when 0 is zero and is thus likely to occur 
only for small values of K*. As the anisotropy orien- 
tation 0 is increased from 0 to 90” the resulting flow 
and temperature patterns are illustrated in Figs. 4b, 
2c and 4d. For 0 = 45”, Fig. 2c indicates that, due to 
the relatively high permeability Kk, the flow in the 
end regions of the cavity is directed towards the upper 
left comer and the lower right one respectively. The 
flow in the central part of the cavity remains never- 
theless essentially parallel. However, as the anisotropy 
orientation t7 is increased further, the distorsion of the 
flow in the end regions spreads progressively in the 
core region. As a result, the parallelism of the flow 
within the cavity is progressively destroyed, as illus- 
trated in Fig. 4d for fI = 90”. Also this figure indicates 
the existence of an extremely thin vertical boundary 
layer. For this reason a poor agreement was observed 
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b) 

4 
Fig. 4. Numerical solution for the flow and temperature fields, R = 100, k* = 1 and (a) 0 = O”, K* = lo’, 
$c = 0.195, T,,, = 0.724, Tmin = -0.724; (b) 0 =o”, K* = lo-“, I,& = 2.330, T,,, = 0.964, 
r,,,,. = -0.964; (c) 0 = 90”, K* = 103, $c = 0.012, T,,,,, = 0.515, T,,,,, = -0.515; (d) 0 = 90”, K* = IO-‘, 

t,bc = 4.543, T,,, = 0.589, T,, = -0.653. 

between these numerical results and the present ana- 
lytical solution. 

The influence of the anisotropy orientation 0 on Nu 
and ijc are presented in Fig. 5a and b, respectively, 
for R = 20 and various values of K*. In an isotropic 
medium (K* = 1) both Nu and I& are independent of 
13, as can be expected. In general, a symmetry of the 
results with respect to 13 = 90” is observed in Fig. 5. 
This follows from the fact that it can be shown, from 
the governing equations (6) and (7) and boundary 
conditions (1 I)-(12) that if $(x, y) and T(x,y) are 
solutions for R, K*, k* and B then $(x, 1 -y) are 
solutions for R, K*, k* and n-0. We can therefore 
limit the discussion to 0 i 0 < 90”. Figure Sa and b 
also indicates that for K* < 1 both Nu and i+Gc are 
minimum at B = O”, for which the permeability in 
the verticai direction is minimum, but maximum at 
0 = 90” for which the permeability in the vertical 

direction is maximum. The inverse is observed for 
K* > 1 for which the convective heat transfer is now 
maximum at 0 = 0” and minimum at 6 = 90”. This 
behavior can easily be demonstrated from the ana- 
lytical solution, at least in the boundary layer regime. 
Taking the first derivative of Nu with respect to 0, 
equations (48) and (44), and making the result equal 
to zero it is readily found that (K* - 1) sin 26 = 0 such 
that a maxima or a minima occurs for 6’ = 0” and 90”. 
From the second derivative it is found that d2Nu/ 
d@ = k R2j5(K* - l)/k*‘/5 when 0 = 0” and 90”, 
respectively. Thus, when K* > l(K* -c 1) Nu is 
maximum (minimum) at ~9 = 0” and minimum 
(maximum) at 13 = 90”. It follows from these results 
that a maximum (minimum) convective heat transfer 
is reached when the orientation of the principal axis 
with higher permeability of the anisotropic porous 
medium is parallel (perpendicular) to the gravity. 
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Fig. 5. Effect of anisotropy orientation angle 0 on (a) Nusselt 
number, (b) stream function at the center for R = 20, k* = 1 

and various values of permeability ratio. 

These results are qualitatively similar to those 
obtained numerically by Xiaoli Zhang [ 161, while 
studying the effect of an anisotropic permeability of 
arbitrary orientation on the convective heat transfer 
in a vertical porous cavity heated isothermally from 
the side. 

The above results can be used to minimize the loss 
of heat through a vertical layer and have thus appli- 
cations in insulation techniques. According to 
Kvernvold and Tyvand [4] the class of porous 
materials defined by 0 < K* < 1 may be interpreted 
as a medium composed of parallel fibers. Figure 5a 
shows that the heat transport is minimum for hori- 
zontal fibers and maximum when the same fibers are 
turned vertically. The class of porous materials 
defined by K* > 1 may be interpreted as a medium 
composed of perforated parallel plates. For this situ- 
ation the Nusselt number is minimum for horizontal 
plates and maximum for vertical plates. Thus, it is 
concluded that the anisotropic medium which gives 
the best insulation is a medium with as small a vertical 
permeability as possible. A similar conclusion has 
been reached by Kvernvold and Tyvand [4] while 
studying free thermal convection in a horizontal 
anisotropic porous layer heated from below. 

Figure 6 shows Nu vs R for selected values of the 
anisotropy orientation 8 and K* = 10-l and 10, 

Nu 
3 

Fig. 6. Effect of the Rayleigh number on the Nusselt number 
for k* = 1, K* = 0.1 and 10 and various values of anisotropy 

orientation angle. 

respectively. The analytical solution, equation (46), is 
compared with the numerical results and is observed 
to be in excellent agreement. When e = 0”, the Nusselt 
number is found to be independent of K* (see also 
Fig. 5a). Thii is only in the limit of a parallel flow 
approximation, for which it is easily seen from equa- 
tions (41)-(43) that a = 1 for 0 = 0” and Nu becomes 
independent of K*. However, in general, when the 
flow is not paraliel Nu does depend upon the aniso- 
tropic ratio K*, as demonstrated by Ni and Beker- 
mann [14] for a square enclosure (A = 1). Also, as 
discussed earlier it is seen from Fig. 6 that for K* < 1 
the heat transfer is enhanced as the anisotropy orien- 
tation is increased from zero towards 90” while the 
reverse effect is observed for K* > 1. The Nusselt 
number predicted for the boundary layer regime equa- 
tions (48), is included as dashed lines in Fig. 6 for 
comparison. The start of the boundary layer regime 
is strongly dependent on K* and 0. For instance for 
0 = 90” the boundary layer regime starts at R ‘v 2 
for K* = 10-l whereas it starts only at R N 200 for 
K* = 10. 

(b) Effects of anisotropic thermal conductivity 
Figure 7a and b shows the streamlines and iso- 

therms obtained numerically for R = 100, K* = 1 and 
k* = lo3 and 10B3, respectively. The flow and tem- 
perature patterns corresponding to a porous medium 
with an isotropic thermal conductivity (k* = 1) are 
depicted in Fig. 2a. For k* = lo3 the isotherms in 
Fig. 7a are vertical, indicating that the heat transfer 
through the cavity is by pure conduction only. The 
absence of temperature gradients in the x-direction is 
due to the fact that the thermal conductivity in that 
direction is much higher than in the y-direction 
(k* >> 1). The resulting flow pattern has lost the 
boundary layer regime observed in Fig. 2a for k* = 1 
even though the flow intensity is now approximately 
five times higher. Despite the strong convective cir- 
culation within the porous layer, the flow pattern of 
Fig. 7a is rather typicaL of natural convection at a 
much lower Rayleigh number. A similar trend has 
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Fig. 7. Numerical solution for the flow and temperature fields, R = 100, K* = 1,O = 0” and (a) k* = 103, 
I/& = 11.598, T,,, = 0.477, T,, = -0.477; (b) k* = 10-3, I& = 0.901, T,,,,, = 4.476, T,,, = -4.476. 

been reported by Ni and Beckermann [ 141 while study- 
ing the effect of a large k* on the convective flow 
within a square enclosure heated isothermally from 
the sides. However, it was reported by these authors 
that a low thermal conductivity ratio (k* << 1) had 
very little influence on the flow and heat transfer pat- 
terns when compared with the isotropic situation 
(k* = 1). This result is not in agreement with the fin- 
dings of the present study where the streamlines and 
isotherms obtained for k* = lo-’ are shown in Fig. 
7b. As it can be seen the isotherms are now con- 
siderably more horizontal than for k* = 1 (Fig. 2a). 
This is expected since when k* is small the thermal 
conductivity is much higher in the horizontal direction 
than in the vertical one. The resulting temperature 
pattern consists in a thermally stratified core region 
giving rise to a flow ciculation approximatively two 
and a half times lower than for the isotropic situation 
(k* = 1). Despite this relatively weak convective cir- 
culation a boundary flow is observed to occur near 
the thermally active walls. 

The effect of thermal conductivity ratio on the Nus- 
selt number and stream function at the center of the 
cavity is depicted in Fig. 8a and b, respectively, for 
K* = I and R = 20, 100 and 200. Figure 8a shows 
that, for a given R, Nu approaches unity as the value 
of k* is made large enough. This is predicted by the 
present theory, equations (49)-(52), which shows that 
when k* is large enough both C and CI tend towards 
zero, independently of the value of R, such that the 
heat transfer is mostly by pure conduction (Nu -+ 1). 
Naturally, the thermal conductivity ratio necessary to 
reach this situation increases with an increase of R. 
For instance it occurs when k* = 10 for R = 20 and 
k* = lo3 for R = 200. In general, a Nusselt number 
approaching unity is associated with a pseudo-con- 
duction regime, i.e. a very weak flow circulation within 
the cavity (R cc 1). This is not the case in the present 

situation where the conductive heat transfer is not a 
consequence of a weak buoyancy force but rather is 
due to a large conductivity ratio. As a matter of fact, 
Fig. 8b shows that the strength of the convective flow 
tic increases asymptotically with k*, according to 

NIJ'2 

k 
36 

(b) 

k 
Fig. 8. Effect of thermal anisotropy ratio k* on (a) Nusselt 
number, (b) stream function at the center for K* = 1 and 

various values of the Rayleigh number. 
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